

An Efficient Access to the Optically Active Manzamine Tetracyclic Ring System

Hideharu Uchida, Atsushi Nishida, and Masako Nakagawa*

Faculty of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

Received 21 September 1998; accepted 23 October 1998

Abstract

The highly stereoselective synthesis of the optically active tetracyclic core 2 of Manzamine A 1 was achieved via the Diels-Alder reaction of dihydropyridinone 12b, derived from L-serine, with siloxydienes, followed by sequential new and conventional pathways. © 1998 Elsevier Science Ltd. All rights reserved.

Keywords: Alkaloids; Asymmetric Synthesis; Cycloadditions; Azocines;

Since their isolation in 1986 [1], the antitumor and antibiotic marine alkaloids manzamine A 1 and biologically related congeners, such as ircinal A and keramaphidin B, have been attractive molecules for total synthesis due to their biological activities and the structural complexity of the novel poly-aza-ring system [2,3]. Recently, two total syntheses of manzamine A 1 have been accomplished by Winkler's [4] and Martin's groups [5], respectively. In our previous paper in this series, we reported the synthesis of the tetracyclic core structure 2 of manzamine A in a racemic form [6-9]. In this paper, we report the synthesis of optically active 2 via a more efficient method based on the Diels-Alder reaction of a new dienophile with siloxydienes.

The four-step synthesis of the protected serinal 5 begins with ester formation followed by N-protection of L-serine by a Boc or benzenesulfonyl group to give the methyl ester 3, which is converted to the corresponding acetonide 4. Ester 4 is then reduced to aldehyde 5 in excellent yield by treatment with DIBAL-H. A key reaction of N-benzenesulfonylpiperidone

6 with the Garner aldehyde 5a using LiN(TMS)₂ proceeded at -60 °C to give the alcohol 7a as a mixture of diastereomers in 70% yield. A similar reaction of 5b with 6 gave 7b (73%).

Scheme 1

Dehydration of 7a via mesylation followed by treatment with DBU gave 9a in 75% yield (2 steps). Originally, we had envisioned installing the C3-C4 double bond through exo-endo isomerization. In previous studies, we achieved isomerization of the exo-enone 9c to the endo-enone 10 by use of silane-Rh-mediated conditions [9]. However, in contrast to 9c, similar exo-endo isomerization of either 9a or 9b to the corresponding endo isomer failed. Therefore, we turned to the reduction-oxidation sequence. Catalytic hydrogenation of 9a gave 11a, but hydrogenation of 9b under similar conditions was unsuccessful. Therefore, we applied Barton's deoxygenation method via the phenoxythiocarbonyl ester for 7b [10]. Conversion of 11a,b to the desired enantiomerically pure dienophile 12a,b was achieved by base-induced thiophenylation at the 3 position of 11 followed by oxidative elimination using standard methods.

With an efficient route to the dienophile 12b established, we turned our attention to the Diels-Alder reaction of 12b with Danishefsky diene 13a. Thus, the reaction of 12b with an excess amount (8 equiv) of 13a in p-cymene at 180 °C proceeded smoothly to give regioselective cycloaddition. Without isolation, the cycloadduct was readily transformed into the corresponding enones (14:15=36:28) in 64% yield after deprotection with PPTS. A similar reaction of 12b with 13b (5 equiv) gave the corresponding enone in 85% yield.

With the reaction of **12a** and **13a**, only degradation products were observed.

Scheme 2

The acetonide 14 was then treated with 1N HCl in THF to give a tricyclic alcohol 16 (78%), together with 17 (21%), which could readily revert to 16 with HCl. The desired stereochemistry of 16 was confirmed by 1 H-NMR spectroscopy and chemical transformation. When 16 was treated with p-nitrobenzoyl chloride in pyridine, the lactone 18 was newly formed in 70% yield, whereas the isomer 19, obtained from 15 in an analogous manner, selectively gave the corresponding p-nitrobenzoate 20. These results supported the cis relationship of the hydroxymethyl group and ring A in 16. The alcohol 16 was then protected with TBDPS and converted into the ketal 21.

In a previous report [8], we noted that the N-benzenesulfonyllactam is susceptible toward the Wittig reagent and could be successfully deprotected using sodium anthracenide. We have now found that the highly functionalized N-benzenesulfonyllactam 21 is also a suitable substrate for this reaction. A sulfonyl group of the lactam 21 was selectively removed with sodium anthracenide to give 22 in 94% yield. Consequently, the sulfonyl group of the secondary amine was readily removed with sodium naphthalenide, and this was followed by reprotection with a Boc group to afford 23.

The remaining task was elongation of the side chain to construct the azocine ring system. Deprotection of the primary TBDPS ether was followed by Dess-Martin periodinane oxidation of the derived primary alcohol to give the labile aldehyde 24. Homologation of the resulting aldehyde 24 using the Wittig reagent, prepared from phosphonium bromide 25 in situ, furnished the olefin 26 (E/Z ratio 1:5) as the key cyclization substrate. A 1:5 ratio of the E and E isomers was determined by E 1H-NMR spectroscopy of the resultant mixture of the pentafluorophenyl ester 27. At this stage, we chose BOP-Cl [11] for the final cyclization.

Thus, a Boc group was first deprotected and the amino acid was treated with BOP-Cl to furnish the desired tetracyclic key compound 2 [$[\alpha]^{22}D = -11$ (c=0.3, CHCl₃)]. Its spectroscopic properties were identical in all respects to those of (\pm) -2 [8].

Scheme 3

Acknowledgment

This research was supported by a Grant-in-Aid for Scientific Research from the Ministry of Science, Education, Sports and Culture. We thank Dr. H. Seki, and Miss R. Hara at the Analytical Center of Chiba University for measuring mass spectra and for the elemental analyses.

REFERENCES

- [1] Sakai R, Higa T, Jefford CW, Bernardinelli, G. J. Am. Chem. Soc. 1986;108:6404-6405.
- [2] Magnier E, Langlois Y. Tetrahedron 1998;54:6201-6258, and references cited therein.
- [3] Li S, Yamamura S, Hosomi H, Ohba S. Tetrahedron Lett. 1998;39:2601-2604.
- [4] Winkler JD, Axten JM. J. Am. Chem. Soc. 1998;120:6425-6426.
- [5] Martin SF, private communication.
- [6] Torisawa Y, Nakagawa M, Hosaka T, Tanabe K, Lai Z, Ogata K, Nakata T, Ohishi T, Hino T. J. Org. Chem. 1992;57:5741-5747.
- [7] Nakagawa M, Torisawa Y, Hosaka T, Tanabe K, Da-te T, Okamura K, Hino T. Tetrahedron Lett. 1993;34:4543-4546.
- [8] Torisawa Y, Hosaka T, Tanabe K, Suzuki N, Motohashi Y, Hino T, Nakagawa M. Tetrahedron 1996;52:10597-10608.
- [9] Torisawa Y, Than S, Katoh C, Motohashi Y, Nishida A, Hino T, Nakagawa M. Heterocycles 1998;42:655-659 and references cited therein.
- [10] Robins MJ, Wilson JS. J. Am. Chem. Soc. 1981;103:932-933.
- [11] Diago-Meseguer J, Palomo-Coll AL. Synthesis 1980;547-551.